1/7^m+2=49^m+5

Simple and best practice solution for 1/7^m+2=49^m+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/7^m+2=49^m+5 equation:



1/7^m+2=49^m+5
We move all terms to the left:
1/7^m+2-(49^m+5)=0
Domain of the equation: 7^m!=0
m!=0/1
m!=0
m∈R
We get rid of parentheses
1/7^m-49^m-5+2=0
We multiply all the terms by the denominator
-49^m*7^m-5*7^m+2*7^m+1=0
Wy multiply elements
-343m^2-35m+14m+1=0
We add all the numbers together, and all the variables
-343m^2-21m+1=0
a = -343; b = -21; c = +1;
Δ = b2-4ac
Δ = -212-4·(-343)·1
Δ = 1813
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1813}=\sqrt{49*37}=\sqrt{49}*\sqrt{37}=7\sqrt{37}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-7\sqrt{37}}{2*-343}=\frac{21-7\sqrt{37}}{-686} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+7\sqrt{37}}{2*-343}=\frac{21+7\sqrt{37}}{-686} $

See similar equations:

| 504*x=42 | | 3(x+2)-5x=23 | | F(x)=-7x-1 | | 4.5(x-3)=-27 | | 11^2+b^2=17^2 | | 6^2y=36^y-2 | | 54+m=89 | | (6)1/6x=1(6) | | 4^x=8^x+3 | | 12+x=+4x | | |5b+7|/8=3 | | 4/6x-1/6=3/6x+5/6 | | 4(x+1/4)=37 | | 4x+92=188 | | 5x=3+13 | | 16=2-3x | | 32x-64=6 | | 2x^2+20+26=0 | | -2u+-1=9 | | -7y=-19-(-12) | | -4q+-2=-18 | | 6^x-4=36^x-1 | | 4w-12-3w=2w+6 | | 2−2s=​(4/​​3)​​s+13 | | x+x+1=26 | | X+1/4x+7/16x=-13.5 | | 3^n+5=1/27 | | x=8.8=9.9 | | -10x+5(-7)=-15 | | X+1/4x+7/16x=-131/2 | | 4v-9=11 | | a-5.10=2a-3.5 |

Equations solver categories